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SUMMARY 
The generation of Aeolian tones is interpreted in terms of the 

theory of aerodynamic sound. T o  do this, the intensity of the 
radiated sound is expressed in terms of the fluctuations in force 
upon a moving rigid body using the approximation that, at low 
Mach numbers, these forces can be calculated assuming incom- 
pressibility of the flow. The fluctuations in lift and drag upon a 
circular cylinder at Reynolds numbers between 40 and 160 are cal- 
culated by integrating the fluctuations in momentum in the eddying 
wake, using the experimental data of Kovasznay (1949). It is 
found that the fluctuating lift per unit length is approximately 

fi = 0.38pU2dcos2rrnt, 
where p is the density of the fluid and t the time, and that the 
magnitude of the fluctuations in drag is about 10% of this. 

The axial length scale of these force fluctuations was found 
by an auxiliary experiment to be very large for Reynolds numbers 
below 100. When 100 < R < 160, the length scale is approxi- 
mately 17d, the transition apparently occurring as a result of the 
instability to three-dimensional disturbances of the laminar 
eddying wake. Using this datum, the mean square acoustic 
pressure generated by the motion about the cylinder at these 
Reynolds numbers is found to be 

where 8 is the angle between the direction of observation and 
the incident stream, I the length of the cylinder and a the velocity 
of sound in the medium. Experiments undertaken to test this 
result directly, using sound intensity measurements from a whirling 
arm apparatus in an accoustically quiet room, gave very good 
agreement. 

At higher Reynolds numbers, when the cylindg wake is 
turbulent, the theory leads to a, similar expression for p 2  but with 
a smaller numerical factor. Analysis of previous experimental 
data on this basis gives good agreement, with a value of about 
0.037 for the numerical constant. In view of this, it is likely 
that some of the earlier data which had appeared to give a Mach 
number dependence of M4, not M6, have been misinterpreted. 
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Finally, mention is made of the conditions when the frequency 
of vortex generation is the same as the natural frequency of the 
wire, and the greatly increased intensity of the sound is seen to 
be the result of the greatly increased axial length scale of the 
force fluctuations. 

The  relative simplicity of this phenomenon makes possible 
perhaps the least ambiguous confirmation yet found of some of 
the essential ideas in the theory of aerodynamic sound. 

1. INTRODUCTION 
The  Aeolian harp is an old 

musical toy which, when placed in the wind, produces these sounds in 
strange successions and combinations. They are heard in the singing of 
the wind through telegraph wires and its sighing through the twigs and 
branches of a leafless tree. It was not until 1878 that the first scientific 
study of them was made by Strouhal, whose apparatus consisted of a 
cylinder mounted upon a whirling arm so that it moved through the air 
at constant speed. Already by 1896; Rayleigh had recognized that the 
production of Aeolian tones is connected with the instability of the vortex 
sheets in the cylinder wake, and most significantly, that it is not essential 
that the cylinder should partake of the vibration to generate these tones, 
although the intensity is greatly enhanced by resonance between the natural 
frequency of the wire and the frequency of the vortex instability. He 
further perceived that the frequency of the note (expressed non-dimensionally 
as the Strouhal number S) depends upon the Reynolds number of the flow 
past the cylinder, and until recently, much of the later work on this 
phenomenon was connected with the determination of this dependence, 
and with the relation between the frequency of the note and that of the 
vortex instability in the wake. Relf (1921) showed that the fundamental 
frequency of the note and the vortex frequency on each side of the cylinder 
wake are equal over a range of Reynolds numbers which has since been 
extended to  values between 50 and lo4 by the work of Kovasznay (1949), 
Roshko (1953) and Gerrard (1955). Measurements of the intensity of the 
sound under various conditions were made by Holle (1938) and Gerrard, 
who measured its directional distribution also. Comparison will later be 
made between the results of these intensity determinations and the 
theoretical predictions of this paper. I n  1896, Rayleigh wrote concerning 
this problem that “ a  dynamical theory has yet to be given”, and to some 
extent this statement remains true. T h e  purpose of this paper is to interpret 
the properties of these tones in terms of our empirical knowledge of the 
flow pattern ; the prediction of the latter still lies beyond the attainments 
of present theory. 

Rayleigh’s important observation that Aeolian tones can be produced 
without vibration of the cylinder suggests that the phenomenon can be 
interpreted within the framework of the theory of aerodynamic sound. 

Aeolian tones were known in antiquity. 
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However, to include the resonant case also in our considerations, the 
definition of this term can be extended slightly. It has previously been 
restricted to sound generated by the action of aerodynamic forces upon 

. fixed surfaces, but since in many instances, these forces will themselves 
produce vibrations of the surfaces, the term can conveniently be extended 
to include those cases in which oscillations of the surface may occur as a 
result of the instability of the basic flow. A distinction is therefore drawn 
in what seems the natural place, between such situations and those in 
which the vibrations are caused by some external mechanism unrelated to 
the flow (a violin bow, perhaps). I n  the latter class, it is the vibrations 
themselves that set up the fluctuating force in the medium, whereas in 
aerodynamic sound the vibrations may occur as a result of the force 
fluctuations from the flow. 

2. THE SOUND FIELD 

T h e  two well-known papers by Lighthill (1952, 1954) which laid the 
foundations of the subject of aerodynamic sound, were concerned with the 
sound field generated by the unsteady motion of an unbounded fluid. 
More recently, Curle (1955), using the same technique as Lighthill, was 
able to account for the effect of solid boundaries to the flow and showed 
that the sound can be considered to be produced by three separate 
mechanisms. The  first is due to the unsteadiness in the fluid itself, and 
as Lighthill showed, is equivalent acoustically to a distribution of quadrupoles 
throughout the fluid. Curle pointed out that, in general, the presence of 
boundaries introduces additional dipole contributions to the sound field 
from the fluctuating stresses acting upon the fluid at the boundary and 
also perhaps source contributions from dilatation of the boundaries. The 
general expression for the density field p(x) involves terms which represent 
these three effects separately, and can be written as 

1 8 1  1 + 4rra; - axi - I;(pvivj+pij) dS,(y)- 4xa; J’s a y d S i ( y ) ,  (2.1) 

where po and a, are the density and velocity of sound in the undisturbed 
medium, vi and pi j  are the velocity and stress tensor at a point y in the 
fluid and r = Ix-yI. The  tensor Tij is given by 

and the integrands in (2.1) are taken at the retarded time t-r/a,,. 
This gives the fluctuations in density in the medium in terms of the 

properties of the flow, which are assumed to be specified a prior;. I n  
general, of course, the density field itself must be included in the specification 
of the flow, and in practice (2.1) is meaningful only to the first order in the 
Mach number in which the direct dynamicdl interaction between the sound 
field and the velocity field can be ignored. T o  obtain this first order term, 

F.M. 2 s  

Tij = pvi vj +pij  - a: p a,, (2.2) 
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it is legitimate to substitute into the right-hand side of (2.1) the values 
that would obtain if the fluid were incompressible, and this, incom- 
pressibility approximation ’ has invariably been made in the applications 
of the theory up  to the present time. With its aid, retaining the leading 
term in each of the integrals, it is found that the radiated part of the sound 
field from the motion in the neighbourhood of a finite closed body is given 
by 

Curle (1955) simplifies this expression when the boundaries are perfectly 
rigid-perfect acoustic reflectors-and at rest, so that ZI, = 0 over S,(y), 
but it will be shown here that the same simplification is possible in rather 
less restrictive circumstances. A sufficient condition for the vanishing of 
the source contribution is simply that the body be incompressible, so that 
its dilatation is zero. T h e  Reynolds stress term in the dipole contribution 
also vanishes if the surface moves uniformly as that of a rigid body. For 
then q(y) = on S,(y), where u, is the velocity of, and wt the 
angular velocity about, the centre of mass, and on substitution into this 
term of the integral and application of Gauss’s theorem, it is found to 
vanish. This second condition clearly embraces the first and (2.3) reduces 
to 

where Fi = - Jpii dSj is the total force with which the body acts upon 
the fluid. Finally, when the orders in the Mach number M of the two 
terms on the right of this equation are examined, it is found that the dipole 
contribution is of order M 3  whereas the quadrupole term is of order M4, 
that is, of the same order as the quantities already neglected in the in- 
compressible approximation to the dipole term. So the quadrupole term 
too can be neglected and, when M is small, 

I n  the generation of Aeolian tones, the fluctuating force is distributed 
along the length of the cylinder, and at low Reynolds numbers, if the flow 
were accurately two-dimensional, the force fluctuations would be in phase 
at all points. However, there are many reasons for believing that in a 
practical situation with a long cylinder (say, a long, thin wire) this will not 
be so, but that the phase of the force fluctuations will vary slowly, probably 
randomly, along its length. One reason is that the inherent small variations 
in the cylinder diameter will result in small changes in the frequency of 
vortex generation at different points which, in a large number of cycles, 
produce finite variations in phase. The  coupling between the motions in 
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planes separated by a large number of diameters cannot be presumed to 
be so tight that such phase differences will not occur. Again, even with 
a perfectly uniform cylinder, if there is a three-dimensional instability of 
any kind, phase differences assuredly will be found, the extreme case being 
given when the flow behind the cylinder is turbulent. This question will 
be considered later in some detail, but if, for whatever reason, a random 
phase variation is present, then the sound intensity radiated from a 
cylinder of length I is approximately 

N 16n2pa3x4 1 (xi$)2 sdl, 

wherefi(2) is the fluctuation in force per unit length at the axial position z,  
s is the dimensionless correlation distance along the axis (so that the actual 
distance is sd) and the subscripts to p and a have been omitted. In  (2.6) 
it is further assumed that I -g sd, as seems likely in many practical cases, 
so that end effects can be neglected. T h e  two principal quantities to be 
determined on the right of this expression are first the mean square value 
of afi/at and second the axial scale s. The  first is to be found from the 
experimental results of Kovasznay (1949) for the eddying motion in the 
wake at a Reynolds number in the regime of two-dimensional flow. This 
restricts our consideration initially to Reynolds numbers below those for 
which the motion is turbulent, although the theory is extended in a later 
section to conditions beyond this range. The  second quantity, the corre- 
lation distance s, is the subject of a subsidiary experiment described in 5 5 .  

3. THE FLUCTUATIONS IN LIFT AND DRAG UPON A CIRCULAR CYLINDER 

The  fluctuations in lift and drag have been calculated by integration of 
the acceleration field of the eddying wake in the directions normal and 
parallel to the direction of the oncoming stream, using the very extensive 
experimental data given by Kovasznay (1949) for a Reynolds number of 50. 
He  expressed the velocity fluctuations in the direction of the oncoming 
stream, in the two-dimensional motion, as 

u(x,y, t )  = +1(x,y)cos2rr[5,(x)+ntl ++2( . ,y )~~~4n[52(~)+nt l ,  (3 .1)  
where the amplitude functions +1 and +2 vary slowly with x (the downstream 
coordinate), but rapidly with y ,  i.e. across the stream. is an odd function 
of y ,  and +2 an even function. Here C,(x) and t,(x) are not quite linear 
functions of x, in order to account for the slightly non-uniform spacing of 
the vortices, and the frequency n is constant in time. Kovasznay measured 
#Jl(x,y)  and rj2(x,y) across the wake at various stations downstream as far 
as xld = 40, and, by smoothing and interpolating between his points, 
these functions have been found for values of y within the wake and for 
values of x between 0 and 40d. Interpolated values of the functions t,(x) 
and 5,(x) have also been obtained from his measurements. 

2 5 2  
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The fluctuations in drag per unit length can be found directly by 
integration of (3.1) and use of the equation 

where the integration is over a plane normal to the cylinder axis. The 
calculation presents no difficulties concerning convergence, since $2(x,y) 
is negligibly small for values of y beyond the centres of the vortices. The 
function $l(x,y) is odd in y ,  so that the integral of the first term in (3.1) 
vanishes, and the fluctuations in drag have a frequency just twice the 
fundamental n. However, the calculation of the fluctuations in lift per 
unit length fi is not so straightforward, since the velocity fluctuations normal 
to the oncoming stream were not measured. They could perhaps be 
calculated from the continuity condition 

au av & + a y = o ’  

which gives 

The difficulty with this method is that measurements of u were not made 
beyond the vortical region of the wake, and to make a correct allowance 
for the virtual mass of the irrotationally moving fluid would indeed be 
complicated. An alternative method was used which required infor‘mation 
about the vorticity field alone. 

It is shown in the Appendix that 

jj v dxdy = - I/ wx dxdy, (3.2) 

where the vorticity w, which vanishes outside the wake, is given by 

av au 
ax ay’ 

W E - - -  

so that, using the continuity condition, 

Hence (3.3) 

the integration being commenced at the edge of the wake. The integral 
Jjvdxdy is calculated from (3.2), (3.3) and (3.1), and some of the details 
of this, including the devices used to ensure more rapid convergence, are 
described in the Appendix. 

The result is found to be 

M = p /iv dxdy = 0.48~ Ud2cos Znnt, (3.4) 
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where U is the mean stream velocity, and thus the fluctuating lift per unit 
length is 

dM 
f - - = 0*38pU2dcos2.rmt, 

dt ( 3 . 5 )  

(taking a new time origin), since n = 0*13U/d at R = 50. The  fluctuation 
in drag per unit length is found by direct integration, and its magnitude is 
very much smaller. In  fact, 

. fd = 0.04pU2dcos4mt. (3.6) 

Just as the fluctuations in drag are determined by the term in (3.1) which 
is an even function of y, so the fluctuating lift is determined by the odd past 
i n y ,  as the result (3.5) implies. For, from (3 .2 ) ,  only the even part of w 

is relevant, or, from (3.3), only the odd part of u. 
The  mean drag per unit length at a Reynolds number of 50 is about 

0 . 7 5 ~  U2d, so that our calculation shows that the magnitude of the maximum 
lift is about 50% of the mean drag. 

The  value 0.38 for the coefficient in (3.5) can be shown to be a not 
unseasonable figure by constructing a very crude upper limit to the 
amplitude of the fluctuating lift in the following way. Suppose that vortex 
sheets of strength U are generated at each side of the cylinder which, because 
of their instability, curl up into discrete vortices like a Karman street. 
Suppose further that all the vorticity is gathered into these vortices, none 
being lost by diffusion. The  separation of the vortices is approximately 
t U / n ,  which, at a Reynolds number of SO and Strouhal number of 0.13, 
is equal to nearly 4d. The  strength of the discrete vortices is therefore 4Ud, 
and the amplitude of the fluctuating circulation about a fixed contour in the 
irrotational fluid is 2Ud, so that the amplitude of the fluctuating lift is 
p U .  2Ud = 2pU2d. That  this is so much greater than the actual value can 
presumably be ascribed to the fact that the process of viscous diffusion 
would lead to a reduction of the coefficient. 

The  accuracy of the calculated value (3.5) is admittedly not very high. 
The  numerical differentiations reduce the accuracy, only partial com- 
pensation being provided by the subsequent integrations, and inspection 
of the working suggests that an accuracy of 40% is probably the best that 
can be claimed. However, this is ample for the present purpose in view 
of the uncertainties of the acoustical measurements themselves. 

4. THE EFFECT OF REYNOLDS NUMBER 

T h e  estimate (3.5) was obtained from consideration of the flow pattern 
at R = 50, and it would be very satisfying if similarly detailed measurements 
were available at other Reynolds numbers in the range of two-dimensional 
eddying motion. Unfortunately, they are not, and some general argument 
will have to be invoked concerning the effect of viscosity upon the flow 
pattern. Such an argument would not be required to give results that are 
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accurate in detail, but only to give a good indication of the variation of the 
amplitude of the lift fluctuations with Reynolds number. 

Let us consider the mechanism of the development of the vortices in 
the wake. The  initial instability introduces small fluctuations in the 
y-position of the vortex layer on each side of the wake, and these result in 
differential convection velocities of the vorticity and the eventual rolling 
u p  of the layer. The  development of the vortices is opposed by the diffusive 
action of viscosity, and the maximum concentration is reached when the 
two effects balance. Thereafter the vortices decay by viscous diffusion 
between those of opposite sign, but it is not difficult to show that, at R = 50, 
this process hardly commences within the first 50 diameters (this being the 
part of the wake upon which the lift and drag calculations of $ 3  depend). 
For, in time t, the vorticity diffuses over a distance of order (vt)li2, so that 
at a point k diameters downstream it has diffused a distance of order 
(vkd/U)1/2 = (k/R)lI2d. When R = 50, this is of order d (still much less 
than the vortex spacing) at 50 diameters from the cylinder; the details 
of the motion in the wake beyond such points,having little influence upon 
the fluctuating forces on the cylinder. For the present purposes, then, a 
decrease in the viscosity of the fluid (or an increase in R) has two conse- 
quences ; it modifies the frequency of the initial instability and also postpones 
the attainment of the balance between viscous and convective vorticity 
transfer, so that the vortices become more concentrated. 

Regarding the second effect, (3.2) shows that, in discussing the 
fluctuating lift, we are concerned not so much with the concentration of 
the fluctuations in vorticity as with their integrated magnitude or with the 
total strength of the vortices. If we assume as an approximation that the 
lateral spacing of the vortices is materially unaltered by a decrease in 
viscosity, the Reynolds number effect must lie in the variation of the strength 
of the vortices. This is indeed a consequence of the first effect, the modifi- 
cation of the frequency of the initial instability and so of the spacing of the 
vortices. The  strength of the vortices can be assumed to be proportional 
to  their spacing, U/n approximately, so that as the viscosity varies, the vortex 
strength varies as S-1, since S = nd/U. Therefore the momentum 
fluctuations normal to the direction of the oncoming stream are proportional 
to  S-l, and on differentiationf, is independent of S and so of R ; consequently 

fi fi 0.38pU2dcos2rrnt, 

for 40 < R < 160. It follows immediately that 

af, = 2 . 4 p i ~ s c o s  2mt.  
at 

T h e  Strouhal number S is well defined empirically as a function of Reynolds 
number (Kovasznay 1949, Gerrard 1955) so that this equation gives 
approximately the depeqdence on Reynolds number of the term afi/at 
in  the expression (2.6). 
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5. THE CORRELATION DISTANCE s 

Very little published information is available concerning the scale of 
the variations in phase of the fluctuations along the axis of the cylinder. 
Both Roshko (1953) and Gerrard (1955), making observations at Reynolds 
numbers greater than about 150, found slow spanwise variation in phase 
along the cylinder, but insufficient data were available to estimate its length 
scale. On the other hand, Kovasznay (1949) found no measurable differences 
at R = 50 over distances of the order of 20 diameters, so that presumably 
the length scale is very much greater than this. An estimate of s is necessary 
for the application of (2.6), and so to obtain this, and to clarify the situation 
if possible, a supplementary experiment was made in a water tank. 

A hollow tube of outside diameter kin.  was stopped up at one end 
and a row of small holes drilled down one side at in. centres. These holes 
were then filled with plasticine which could be removed easily from two 
of them to give open holes separated by any desired numbqr of diameters 
from 1 to 30. The  tube was filled with dye and lowered vertically into a 
tank of still water. The  tube was drawn through the water with a given 
velocity, and the vortex patterns were observed at two different axial 
positions by the dye traces at the two free holes. End effects were avoided 
by making no observations within 10 diameters of the stopped end of the 
tube or within 4 diameters of the free surface. The  differences in phase 
were measured by looking vertically downwards at the dye patterns behind 
the cylinder, and, by repeating the experiment a large number of times 
for points at a given separation, the correlation coefficient of the fluctuations 
in lift was estimated. By repeating this procedure with holes at different 
separations, the length scale of the lift fluctuations was determined 
approximately. 

For 
Reynolds numbers below about 80, very little phase difference was observed 
even for the largest available separation of 30 diameters, so that under these 
conditions the axial scale is certainly much greater than this. However, 
when the Reynolds number was between 100 and 160, the phase differences 
were clearly observed. At a separation of about 30 diameters, the phases 
appeared to be almost uncorrelated. The  scale s was estimated to be 
between 15 and 20 diameters, and did not appear to depend critically 
upon Reynolds number or upon the presence or absence of small disturbances 
in the water before the passage of the cylinder. At Reynolds numbers 
between these two ranges, i.e. between 80 and 100, it was noticed that 
there was little difference in phase if the tank was allowed to settle for a 
minute or two between successive trials, but that random variations were 
set up  with about the same scale as at higher Reynolds numbers if two 
trials were carried out in rapid succession or if the water was disturbed 
slightly prior to an attempt. 

These observations suggest that, at Reynolds numbers between about 
40 and 80, the eddying motion is truly two-dimensional, and apparently 
stable to small disturbances in the oncoming stream. As the Reynolds 
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The  results of these observations can be summarized as follows. 
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number increases to a value between 80 and 100, however, the laminar 
motion becomes unstable to three-dimensional disturbances with a length 
scale along the axis of about 17d, and the flow becomes only approximately 
two-dimensional. This new type of motion persists until about R = 160, 
when yet further modes are excited and the flow eventually becomes 
turbulent. These observations are consistent with those already mentioned 
for Reynolds numbers of 50 and 150. 

Returning to our basic problem, it seems that a reasonable value for s 
in (2.6) is about 17 for Reynolds numbers between 100 and 160. Below 
this range, a much larger value can be expected, and its magnitude would 
be determined, not by the flow conditions, but by the small imperfections 
and irregularities in the diameter of the wire, as has been explained in $2. 
These can hardly be considered to  be under the control of the experimenter, 
and reasonable a priori estimates of the magnitude of the radiated sound 
are difficult without detailed examination of each particular wire. One 
further point arises from these observations. The  fluctuating lift and drag 
were calculated on the assumption of a two-dimensional flow, and some 
error will be introduced into (4.1) by the lack of two-dimensionality at 
values of R between 100 and 160. However, since the scale of the variations 
along the axis of the cylinder is very much greater than that in the plane 
normal to the axis, such errors are expected to be quite small. 

6. COMPARISON WITH EXPERIMENT 

The radiated intensity can be found immediately from (2.6) and (4.1). 
Neglecting the relatively small fluctuations in drag, the radiated sound is 
generated by the fluctuating lift, and so consists of a dipole field with its 
axis normal to the direction of the oncoming stream. From (4.2), 

so that the total radiated intensity at points distant r from a cylinder C J f  

length 1 is 

where 6’ is the angle between the oncoming stream and the direction of the 
line joining the point of observation to the cylinder, and s has been taken 
as 17. The  mean square acoustic pressure is 

p21d U6S2 o m  cos2e 
a2r2 ‘ 

Some experiments were undertaken to test this result, particularly the 
variation of p” as the sixth power of the Mach number. The  measurements 
of sound intensity, which were made at the Acoustics Laboratory of the 
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National Physical Laboratory, Teddington, by the kind permission of the 
Superintendent of the Physics Division and Mr N. Fleming, were executed 
by Mr W. C. Copeland. I am greatly indebted to them for their generous 
and able assistance. The apparatus consisted of two thin wires, 60 cm in 
length and 0-0123 cm in diameter, held vertically with just sufficient tension 
to prevent sagging, between two arms mounted on a spinning shaft of 
diameter -g in.-the same type of arrangement as that used by Strouhal 
and Gerrard. The supporting arms were made of 2 in. dural sheet 
tapered and streamlined to reduce disturbances. The shaft was belt-driven 
from an electric motor, and, to reduce the background noise level, the 
motor and all the ball-bearings were enclosed in felt-lined boxes. The 
apparatus was mounted on an open steel frame and, when in position for 
the measurements, was placed in the acoustically quiet room at the N.P.L. 
with a microphone 115 cm from the axis of the shaft in the plane bisecting 
the wires. The apparatus was tested by running it with the wires removed, 
and the noise level was found to be negligible in the frequency range at 
which the measurements were made. 

The microphone signal was amplified and passed through a variable 
frequency narrow-band analyser, and displayed on the screen of a cathode- 
ray oscillograph. The modulation with time, corresponding in the whirling 
arm apparatus to the variation with 8, followed closely that indicated by 
the cos28 factor in (6.2). For the intensity measurements, the peak values 
of p, corresponding to orientations B = 0, were observed at a number of 
frequencies within the narrow spectrum of the sound generated, from 
which the total radiation was calculated. The speed of the wires was 
altered by variation of their radial position and of the speed of the motor. 
The results of these measurements are shown as the solid points in figure 1, 
together with the predicted relation (6.2), and the agreement is seen to be 
remarkably good. However, the constant in (6.2) is reliable only to within 
a factor of two, this range of uncertainty being approximately the same as 
the experimental uncertainty shown by the scatter of the points. For 
values of U(ZdS2/r2)1/6 less than about 140, corresponding in these measure- 
ments to Reynolds numbers less than about 100, an intermittent signal of 
very much higher intensity was sometimes recorded, which was consistent 
with the establishment of the regime of truly two-dimensional flow over 
most of the length of the wires and the consequent enormous increase in 
the value of s. However, under the experimental conditions, it was not 
possible to produce a sufficiently stable signal to make systematic observa- 
tions, and indeed, even had this been possible, there remains the strong 
suspicion that the results would not be generally applicable, but would 
depend upon the imperfections of the particular wire used. 

These results offer good evidence for the validity of the expression (6.2) 
in the Reynolds number range from 100 to 160. The variation of the 
sound intensity as the sixth power of the velocity seems to be confirmed 
well, and in the next section it will be shown that this remains true when 
the flow is turbulent at higher Reynolds numbers. 
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7. TURBULENT FLOW 

Hitherto attention has been concentrated upon conditions at Reynolds 
numbers below that for the onset of turbulent flow. As R increases beyond 
this range, intermittent bursts of turbulence occur in the flow, as described 
by Roshko (19.53), until at about R = 300 the wake behind the cylinder 
is fully turbulent. The  expressions given for the fluctuating lift and axial 
length scale are no longer relevant but we can still predict their order of 
magnitude and dependence on Reynolds number and obtain, for these 
new conditions, an expression for the intensity of the radiated sound which 
is arbitrary only to the extent of an unknown constant factor. 

It is clear that the presence of a fluctuating lift depends upon the 
existence of large-scale axial eddies of alternating sign near the cylinder. 
Some measurements have recently been made by Mr  I. C. T. Nisbett at 
the Cavendish Laboratory in the turbulent flow near the cylinder at 
Reynolds numbers of order 5 x lo3. He has established the presence of 
a surprisingly distinct large-scale structure, similar in many ways to that 
observed in the two-dimensional eddying flow at lower Reynolds numbers. 
These large eddies are approximately parallel to the cylinder axis, and 
contain an appreciable amount (about half) of the turbulent energy, the 
remainder being in the irregular smaller-scale fluctuations. They appear 
to be somewhat contorted in the axial direction, since simultaneous velocity 
correlations between similar points in planes normal to the axis are alter- 
nately positive and negative as the axial separation increases up to about 
20 diameters. T h e  integral length scale of these eddies along the axis is 
about three diameters. These observations, in the light of our previous 
discussion and of such formal expressions as (3.2), suggest that the 
fluctuations in lift are still dominant even at these Reynolds numbers, and 
that their length scale is about 3d, although we can make no apriori statement 
about their magnitude. 

What of the variation of the magnitude of the fluctuating lift with 
Reynolds number ? Here, again, the general arguments of $4 still apply 
with equal force, and we have 

(fi2)1/2 = constant pU2d. 

Some further support to this relation is afforded by the principle of 
Reynolds number similarity (Townsend 19.56). This principle expresses 
the fact that the large-scale components of the motion are not influenced 
by the fluid viscosity if it is sufficiently small, i.e. by the Reynolds number 
provided it is sufficiently large. We have seen that the fluctuating lift is 
a consequence of the large eddy motion in the wake, so that (7.1), which 
is correct dimensionally, is also independent of the (large) Reynolds number. 
Whether or not the principle of Reynolds number similarity holds in this 
situation for values of R as low as 300 is perhaps open to question, but for 
higher values it can certainly be invoked to support (7.1). Using this 
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relation, then, we have from (2.6) that the radiated intensity from a cylinder 
of length I is 

pldU6S2 I (Y) = a cos28 ~ 

a3r2 ’ (7.2) * 

which differs from (6.1) only in the constant factor which is now represented 
by a. Again, as in (6.2), the mean square acoustic pressure is given by 

p21d U6S2 
a2Y2 ’ @ ( I , )  = orcos20 (7.3) 

where the Strouhal number S involves the frequency of ‘ shedding ’ of the 
large eddies, or the fundamental frequency of the sound generated. The 
constant Q can be expected to be considerably smaller than 0.27, because 
of the reduced length scale of the fluctuations in lift per unit length and 
also possibly a reduced intensity arising from the decreased coherence in 
the turbulent flow. 

Detailed measurements of the sound intensity radiated at Reynolds 
numbers for which the flow is turbulent have been made by Holle (1938) 
and by Gerrard (1955). Now, Gerrard’s curves of intensity as a function 
of velocity at constant Reynolds number (obtained by keeping the product 
Ud fixed) appear to show that p” cc U4, but this behaviour is inconsistent 
with the U6 variation suggested by a rough application of the theory (as 
he himself points out) and his results have hitherto presented something 
of an anomaly. However, (7.3) shows that, with Ud fixed, -we should 
expect that cc u”, so that the anomaly is not as serious as might appear 
a t  - first. A possible cause of the discrepancy lies in Gerrard’s having taken 
p 2  cc 12/r2 when 19 d in the analysis of his data, which implies that the 
fluctuations in lift are in phase along the entire length of the cylinder, over 
many hundreds of diameters. I n  turbulent flow, the case for assuming a 
random phase variation along the cylinder (leading to intensities propor- 
tional to the$rst power of the length as in (7.2)) is even stronger than at 
the lower Reynolds numbers discussed in the previous sections, yet 
independent confirmation that this is so even under these latter conditions 
has been given by the agreement between the absolute values of the 
measured and predicted sound intensities shown in the upper curve of 
figure 1”. Nisbett’s observations on the flow at high Reynolds numbers 
provide yet further strong evidence for random phase variations, so that 
it seems inevitable that, in fact, cc llr2 in the radiated field under the 
circumstances of Gerrard’s measurements. 

In  his figure 4, some of Gerrard’s measured values of p” under a variety 
of conditions are plotted as a series of curves together with the relevant 
experimental parameters. Assuming that in fact Fcc ZIT2, these points 
have been replotted as a function of velocity and Reynolds number in 
the lower curve of figure 1 of this paper. This diagram also showsla 

- * If, in (6.2), sd is replaced by the length I, the expression would give values of 
p2 about 250 times those measured in the experiments of $ 5. 
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relation, then, we have from (2.6) that the radiated intensity from a cylinder 
of length 1 is 

pld U6S2 I(Y) = acos2B - 
a3r2 ’ (7.2) * 

which differs from (6.1) only in the constant factor which is now represented 
by CI. Again, as in (6.2), the mean square acoustic pressure is given by 

p21dU6S2 
a2r2 ’ pz(r) = CIcos2d (7.3) 

where the Strouhal number S involves the frequency of ‘ shedding ’ of the 
large eddies, or the fundamental frequency of the sound generated. The 
constant cc can be expected to be considerably smaller than 0.27, because 
of the reduced length scale of the fluctuations in lift per unit length and 
also possibly a reduced intensity arising from the decreased coherence in 
the turbulent flow. 

Detailed measurements of the sound intensity radiated at Reynolds 
numbers for which the flow is turbulent have been made by Holle (1938) 
and by Gerrard (1955). Now, Gerrard’s curves of intensity as a function 
of velocity at constant Reynolds number (obtained by keeping the product 
Ud fixed) appear to show that p” cc U4, but this behaviour is inconsistent 
with the U6 variation suggested by a rough application of the theory (as 
he himself points out) and his results have hitherto presented something 
of an anomaly. However, (7.3) shows that, with Ud fixed,-we should 
expect that cc u”, so that the anomaly is not as serious as might appear 
a t  first. A possible cause of the discrepancy lies in Gerrard’s having taken 

cc 12/r2 when 1 $ d in the analysis of his data, which implies that the 
fluctuations in lift are in phase along the entire length of the cylinder, over 
many hundreds of diameters. In  turbulent flow, the case for assuming a 
random phase variation along the cylinder (leading to intensities propor- 
tional to the first power of the length as in (7.2)) is even stronger than at 
the lower Reynolds numbers discussed in the previous sections, yet 
independent confirmation that this is so even under these latter conditions 
has been given by the agreement between the absolute values of the 
measured and predicted sound intensities shown in the upper curve of 
figure 1”. Nisbett’s observations on the flow at high Reynolds numbers 
provide yet further strong evidence for random phase variations, so that 
it seems inevitable that, in fact, cc l/r2 in the radiated field under the 
circumstances of Gerrard’s measurements. 

In  his figure 4, some of Gerrard’s measured values of p” under a variety 
of conditions are plotted as a series of curves together with the relevant 
experimental parameters. Assuming that in fact PCC l /r2,  these points 
have been replotted as a function of velocity and Reynolds number in 
the lower curve of figure 1 of this paper. This diagram also showsla 

* If, in (6.2), sd is replaced by the length I, the expression would give values of - 
p2 about 250 times those measured in the experiments of 4 5 .  
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representative sample of Holle’s (1938) measurements*, and these agree well 
with Gerrard’s replotted points. They all lie about a single straight line 
passing through the origin, as predicted by equation (7.3), and cover a 
fairly wide range of conditions. The slope of the line is less than under 
conditions of non-turbulent flow and corresponds to a value of a of 
approximately 0.037. The scatter of the points is not inconsiderable, 
but the linearity of the relation seems to be confirmed well, and provides 
good support for the result (7.3) which is based upon the ideas of the theory 
of aerodynamic sound. 

8. SOME FINAL REMARKS 

The satisfactory agreement between these various experimental results 
and the theory gives confidence that the latter is firmly founded. One 
factor ignored in our considerations, however, is the possibility of vibration 
of the wire. However it is not difficult to show that the amplitude of the 
vibrations is indeed small compared with the wire diameter provided the 
tension is such that the natural frequency of the wire is very far from the 
vortex frequency, and the density of the medium is much less than that 
of the wire. Under these conditions, which have been satisfied in the 
experiments mentioned here, the vibrations of the wire can reasonably 
be neglected. On the other hand, if the frequency of vortex shedding 
coincides with the fundamental frequency of the wire, or with one of its 
low harmonics, then resonance will lead to vibrations of finite amplitude. 
Rayleigh’s observation that the acoustic intensity is greatly enhanced under 
these conditions was mentioned earlier in this paper, and there arises the 
question of accounting for this within the framework of the present theory. 

Now, the two basic variables which determine the intensity of the 
radiated sound are the magnitude of the fluctuations in lift, and the 
correlation distance s. The first quantity will clearly be modified by the 
presence of vibrations, both through the introduction into equations such 
as (3.2) of an additional term describing the motion of the boundary and 
through the modification of the flow pattern, but since the maximum 
velocity of the vibrating wire could not be expected to be much greater 
than the wind velocity, these could not reasonably be expected to contribute 
a factor of more than about 5 to the intensity of the sound radiation. A much 
more powerful contribution will be given by the increase in the value of s 
brought about by the equalization of the phase of the fluctuating lift along 
the wire. The vibrations, which may be in phase over the whole length 
and are at the same frequency as the vortex ‘ shedding ’, clearly provide a 
coupling between the motions in the fluid at different axial positions that is 
far more effective than any hydrodynamic coupling. The phase of the 
large eddies loses its randomness along the cylinder, and is determined by 
the phase of the vibrations, so that for the fundamental the correlation 
distance sd now becomes the length 1, which can represent an increase of 

* Incidentally, Holle found experimentally that 3 cc Z/r2 approximately, as in 
(7.3), and that the velocity dependence was as U7, nearly. But a reasonably fit is 
still obtained by plotting (F)ll6 against U as in figure 1. 
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many hundreds of times. T h e  explanation of Rayleigh’s observation seems 
to  lie in this effect rather than in any increase in the magnitude of fi. 

The  value of this work may go beyond the interpretation and under- 
standing of the phenomenon of Aeolian tones. T h e  relative simplicity of 
the fluid motion makes possible what is perhaps the least ambiguous 
confirmation yet found of some of the essential ideas in the theory of 
aerodynamic sound, and gives even greater confidence in their application 
to more complex problems. 

APPENDIX. FLUCTUATIONS IN WAKE MOMENTUM 

From the vector identity 

it can readily be shown that 
x x w  = V(x. v) - ( v .  V ) x -  ( x .  V ) v ,  (-4.1) 

/ v d x = & / ( x x w ) d x + &  i x x ( d S x v ) ,  (-4.2) 

where the integration is throughout the region bounded by the closed 
surface S. We apply this to the two-dimensional flow about a cylinder 
centred on the z-axis, considering the volume bounded by the planes z = 0 
and z = d,  say. The  cylinder is considered to be fixed, and the surface of 
integration reduces to the two planes, so that (A.2) becomes 

d 1.1 v dxdy = 4d 1 [(x xw) dxdy + 3 [I x x (dS x v)] + 
2=d 

+& [ j x x ( d S x v ) ]  Z=O . 
i 

In  the two-dimensional motion the fluctuations in velocity and vorticity 
are v = (u, v, 0) and o = (0,0, w ) ,  and on substituting these into the last 
expression, we obtain for the fluctuations in momentum in the y-direction 
normal to the oncoming stream, 

d v dxdy = - i d  11 wx dxdy + i d  11 2’ dxdy, 

since dS = (0,0, -dxdy)  on z = d. Therefore 

jl v dxdy = - 11 wx dxdy, 

11 u dxdy = J! WY dxdy. and similarly 

where the limits are understood to be taken in the sense 

lim( IimJ;, J’2/ --Y v dydx).  
!%+a2 y-tm 

I n  the eddying wake behind a cylinder (of unit diameter) we shall 
neglect fluctuations in the vorticity of the boundary layer, since Kovasznay’s 
measurements indicate that the unsteady motion is small within the first 
few diameters of the centre of the cylinder. The  fluctuations in vorticity 



The intensity of Aeolian tones 623 

are found from equation (3.3), and on considering only that part of u in (3.1) 
that is an odd function in y, 

the upper limit being taken at y = 5 since it was found that the vorticity 
was zero along this line over the length of the wake to be considered. The  
integration over y in (A.3) is most conveniently performed first ; since 4, is 
an odd function of y ,  we have 

00 

1 w dy = X,(x)cos 2n[cl(x) + nt] - Xz(x)sin 2n[c1(x) + at] ,  
., - m 

where 

and so 
- 5  . - 5  

m - 0 2  

-1 lvdxdy ={f xxl(x)cos2x5,(x)dx-J xXb(x)sin2nIll(x)dx 
n 0 

1 m . W  

- { 1 x Xl(x)sin 2n c,(x> dx + j x x,(x)cos 2n c,(x> dx sin 2nnt. 

An integration by parts makes these integrals more rapidly convergent ; 
0 0 

rn 

- If v dxdy = cos 2nnt .I [B,(x)sin 2~ 5,(x) + B,(x)cos 2n 5,(x)] dx t 
0 

where 

m + sin 277nt f [B,(x)cos 2n 5,(x) + B,(x)sin 2n 5,(x)] dx, (AS) 
0 

with a similar expression for O,(x). 
The  expression (AS) is that from which the fluctuations in wake 

momentum were calculated. Kovasznay’s (1949) experimental results for 
+,(x,y) were smoothed and interpolations were made so that a map of the 
function was obtained for the domain - 5 < y < 5, 0 < x < 40. The  
functions a(x,y) and p(x,y) were found numerically, and x,(x) and xz(x) 
calculated by integration. B,(x) and B,(x) were thence obtained, and the 
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final result emerged from the integration of (AS). It was that 

11 v dxdy = 0.48Ud2cos 2mt, ( A 4  

giving the fluctuating lift as 
fi = 0.38pU2dcos2nnt, 

since at this Reynolds number n = 0-13U/d. These are the results quoted 
in (3.4) and (3.5). 
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